Up to 30% off e-learning!

Click here to view all offers

Use offer code: APRIL24SA
Learn now, pay later – payment options available
83db7e84-48a7-46f0-9c18-844705c88ca8
Enhance your career now
generic.call_us
+44 (0) 1270 611 600
With exams
Request a quote
Course type: Virtual
Delivery: Virtual
Spread the cost

BCS, Foundation in Artificial Intelligence Virtual

The BCS accredited Certificate in Artificial Intelligence Foundation course is our latest Artificial Intelligence training course. The course builds upon the basic knowledge of AI. Over the two days the course will take you from a basic understanding of AI to the ability to create your own AI product.

Course overview

About the course

Artificial Intelligence Foundation Certification incorporates and builds on the essentials certification to develop a portfolio of AI examples using the basic process of machine learning. It shows how AI delivers business, engineering and knowledge benefits. 

Examples are presented; drawing on standard open source software and cloud services. Candidates will explore what is required to develop a machine learning portfolio and given access to the examples for on-going self-study.

What is virtual classroom training?

Virtual instructor-led training combines the personal teaching experience of a classroom, with the ease and flexibility of a virtual environment. Virtual courses are interactive and engaging, allowing participants to communicate with both the instructor and each other in a collaborative manner.

Duration

This is a two-day intensive virtual course.

Ethical and Sustainable Human and Artificial Intelligence (20%). Candidates will be able to:  

  • Recall the general definition of Human and Artificial Intelligence (AI) 
  • Describe the concept of intelligent agents.  
  • Describe a modern approach to Human logical levels of thinking using Robert Dilt’s Model. 
  • Describe what are Ethics and Trustworthy AI 
  • Recall the general definition of Ethics.  
  • Recall that a Human Centric Ethical Purpose respects fundamental rights, principles and values 
  • Recall that Ethical Purpose AI is delivered using Trustworthy AI that is technically robust. 
  • Recall that the Human Centric Ethical Purpose Trustworthy AI is continually assessed and monitored. 
  • Describe the three fundamental areas of sustainability and the United Nation’s seventeen sustainability goals. 
  • Describe how AI is part of ‘Universal Design,’ and ‘The Fourth Industrial Revolution’.  
  • Understand that ML is a significant contribution to the growth of Artificial Intelligence.  
  • Describe ‘learning from experience’ and how it relates to Machine Learning (ML) (Tom Mitchell’s explicit definition). 

Artificial Intelligence and Robotics (20%) . Candidates will be able to:  

  • Demonstrate understanding of the AI intelligent agent description 
  • List the four rational agent dependencies 
  • Describe agents in terms of performance measure, environment, actuators and sensors 
  • Describe four types of agent: reflex, model-based reflex, goal-based and utility-based.  
  • Identify the relationship of AI agents with Machine Learning (ML).  
  • Describe what a robot is.  
  • Describe robotic paradigms 
  • Describe what an intelligent robot is.  
  • Relate intelligent robotics to intelligent agents.  

Applying the benefits of AI – challenges and risks (15%). Candidates will be able to:

  • Describe how sustainability relates to human-centric ethical AI and how our values will drive our use of AI will change humans, society and organisations. 
  • Explain the benefits of Artificial Intelligence 
  • List advantages of machine and human and machine systems. 
  • Describe the challenges of Artificial Intelligence, and give the general ethical challenges AI raises, along with examples of the limitations of AI systems compared to human systems.  
  • Demonstrate understanding of the risks of AI project 
  • Give at least one a general example of the risks of AI 
  • Describe a typical AI project  
  • Describe a domain expert 
  • Describe what is ‘fit-of-purpose’. 
  • Describe the difference between waterfall and agile projects. 
  • List opportunities for AI.  
  • Identify a typical funding source for AI projects and relate to the NASA Technology Readiness Levels (TRLs).  

Starting AI how to build a Machine Learning Toolbox – Theory and Practice (30%). Candidates will be able to:

  • Describe how we learn from data – functionality, software and hardware. 
  • List common open source machine learning functionality, software and hardware 
  • Describe introductory theory of Machine Learning.  
  • Describe typical tasks in the preparation of data. 
  • Describe typical types of Machine Learning Algorithms.  
  • Describe the typical methods of visualising data.  
  • Recall which typical, narrow AI capability is useful in ML and AI agents’ functionality.  

The Management, Roles and Responsibilities of humans and machines (15%). Candidates will be able to:

  • Demonstrate an understanding that Artificial Intelligence (in particular, Machine Learning) will drive humans and machines to work together.  
  • List future directions of humans and machines working together.  
  • Describe a ‘learning from experience’ Agile approach to projects  
  • Describe the type of team members needed for an Agile project. 
  • Ethical and Sustainable Human and Artificial Intelligence
  • Artificial Intelligence and Robotics
  • Applying the benefits of AI - challenges and risks 
  • Starting AI how to build a Machine Learning Toolbox - Theory and Practice 
  • The Management, Roles and Responsibilities of humans and machines

This is an intensive two-day virtual course that includes the following:

  • All accompanying course material                                                                   
  • The cost of the exam 

Optional extra

  • Pass Protect exam insurance - A cost effective solution, providing insurance and peace of mind if things don’t go to plan with your first exam attempt. For more information and terms and conditions click here

Delegates will be provided with a Pearson VUE exam voucher one week prior to course commencement. This enables you to book and sit your exam at your local Pearson VUE testing centre at a time and date convenient to you.  Pearson VUE centres are worldwide, and you will be able to choose the closest testing centre to you. You then go along to the test centre with your photo ID at the specified date and time and you will then take an electronic exam. Your exam voucher will have an expiration date and your exam must be sat before this date as these vouchers cannot be extended.

Exam format

The exam will consist of: 

  • A one-hour closed book exam  
  • Consisting of 40 multiple choice questions  
  • Pass mark is 26/40 

Currently awaiting accreditation from BCS.

Those individuals with an interest in, (or need to implement) AI in an organisation, especially those working in areas such as science, engineering, knowledge engineering, finance, or IT services. 

The following broad set of roles would be interested: 

Engineers; Scientists; Professional research managers; Chief technical officers; Chief information officers; Organisational change practitioners and managers; Business change practitioners and managers; Service architects and managers; Programme and planning managers; Service provide

There are no entry requirements for this training.

Why Choose ILX learning?

Graduates
500,000+
graduates
Corporate clients
5,000+
corporate clients
Customer satisfaction
96%
customer satisfaction